„Félempirikus kötési formula” változatai közötti eltérés

Innen: TételWiki
(Tagmagyarázat)
(Hibajavítás)
 
1. sor: 1. sor:
A kötési energia abszolútértéke:
+
A kötési energia:
  
<math>|E_{\text{k}}| = \underbrace{a_{\text{V}}A}_{\text{terfogati tag}}-\underbrace{a_{\text{S}}A^{\frac{2}{3}}}_{\text{feluleti tag}}-\underbrace{a_{\text{C}}\frac{Z(Z-1)}{A^{\frac{1}{3}}}}_{\text{Coulomb-tag}}-\underbrace{a_{\text{A}}\frac{(A-2Z)^2}{A}}_{\text{szimmetriatag}} + \underbrace{\delta(A,Z)}_{\text{parkh.-i tag}}.</math>
+
<math>E_{\text{kot}} = \underbrace{a_{\text{V}}A}_{\text{terfogati tag}}-\underbrace{a_{\text{S}}A^{\frac{2}{3}}}_{\text{feluleti tag}}-\underbrace{a_{\text{C}}\frac{Z(Z-1)}{A^{\frac{1}{3}}}}_{\text{Coulomb-tag}}-\underbrace{a_{\text{A}}\frac{(A-2Z)^2}{A}}_{\text{szimmetriatag}} + \underbrace{\delta(A,Z)}_{\text{parkh.-i tag}}.</math>

A lap jelenlegi, 2011. június 26., 23:34-kori változata

A kötési energia:

E_{\text{kot}} = \underbrace{a_{\text{V}}A}_{\text{terfogati tag}}-\underbrace{a_{\text{S}}A^{\frac{2}{3}}}_{\text{feluleti tag}}-\underbrace{a_{\text{C}}\frac{Z(Z-1)}{A^{\frac{1}{3}}}}_{\text{Coulomb-tag}}-\underbrace{a_{\text{A}}\frac{(A-2Z)^2}{A}}_{\text{szimmetriatag}} + \underbrace{\delta(A,Z)}_{\text{parkh.-i tag}}.