

FIG. 10. Seaweed morphology in a crystal close to the {111} orientation. (a) $V=8.6~\mu{\rm m\,s^{-1}}~(\approx 4.5 V_{\rm CS});$ (b) $V=29~\mu{\rm m\,s^{-1}}~(\approx 15 V_{\rm CS});$ (c) $V=64~\mu{\rm m\,s^{-1}}~(\approx 34 V_{\rm CS});$ (d) $V=100~\mu{\rm m\,s^{-1}}~(\approx 53 V_{\rm CS}).$

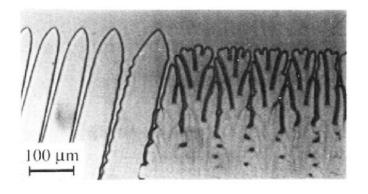


FIG. 11. Grain boundary between a tilted-dendritic grain and a seaweed grain. $V=29~\mu m~s^{-1}~(\approx 15 V_{CS})$.

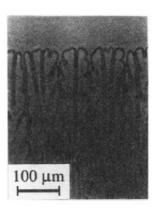


FIG. 15. A seaweed cell containing one doublon whose lifetime was about 30 s (\approx 60 τ_d). V = 32 μ m s⁻¹ (\approx 17 $V_{\rm CS}$).

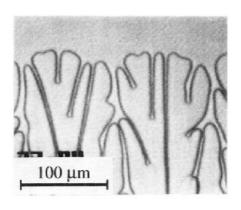


FIG. 17. Enlarged view of a seaweed pattern. $V\!=\!32~\mu\mathrm{m\,s^{-1}}~(\approx\!17V_{\mathrm{CS}})$. Note, from left to right, a doublon joining a wide groove, a newly created doublon, and a triplet structure.

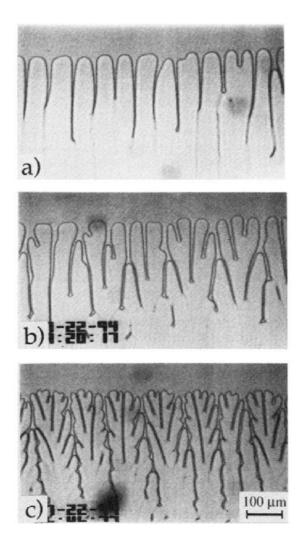


FIG. 18. The low-velocity transition in a nearly {111}-oriented grain. (a) $V=4~\mu{\rm m}~{\rm s}^{-1}~(\approx 2.1 V_{\rm CS})$. (b) 8.5 $\mu{\rm m}~{\rm s}^{-1}~(\approx 4.5 V_{\rm CS})$; (c) 32 $\mu{\rm m}~{\rm s}^{-1}~(\approx 17 V_{\rm CS})$.

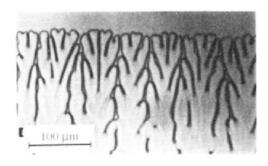


FIG. 2. Seaweed pattern in a nearly {111}-oriented crystal. The growth direction is upward, as for all the photographs in this article. The pulling velocity $V\!=\!64~\mu\mathrm{m}~\mathrm{s}^{-1}(\approx 33.7\,V_{\mathrm{CS}})$.

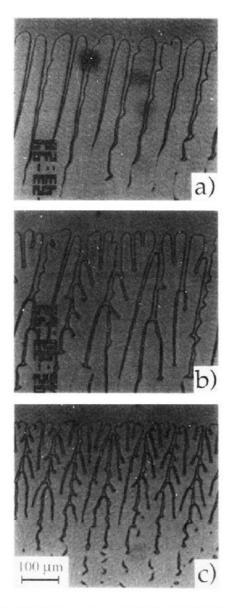


FIG. 21. Tilted-seaweed morphology in a crystal close to (but not exactly in) the (111) orientation. (a) V=12.5 $\mu \rm m\,s^{-1}$ ($\approx 6.5\,V_{\rm CS}$); (b) V=19.6 $\mu \rm m\,s^{-1}$ ($\approx 10.3\,V_{\rm CS}$); (c) V=32 $\mu \rm m\,s^{-1}$ ($\approx 16.8\,V_{\rm CS}$).

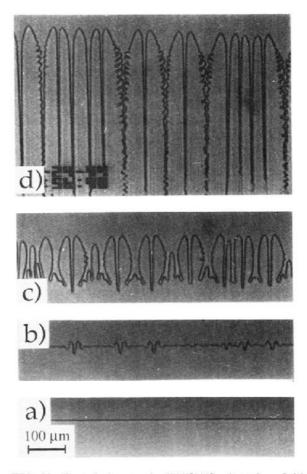


FIG. 22. Crystal close to the (001)[100] orientation. Initial transient of the first run at $V=103~\mu\mathrm{m\,s^{-1}}$ ($V\approx54V_{\mathrm{CS}}$; $l_d=4.9~\mu\mathrm{m}$; $\tau_d=0.05~\mathrm{s}$). (a) $t=0~\mathrm{s}$ (onset of the pulling); (b) $t=6.4~\mathrm{s}$; (c) $t=8.1~\mathrm{s}$; (d) $t=42~\mathrm{s}$. Note the dendritic doublons in the middle and the multiplet on the right. The tilt angle of the dendrites is about 2°, with a negligible dispersion.

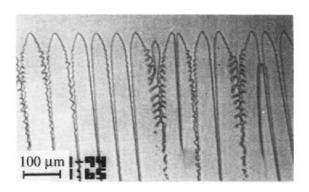


FIG. 23. Same grain as in Fig. 22. Second run at V=103 $\mu \rm m\,s^{-1}$. The tilt angle of the dendrites is 5°±2°. This figure corresponds to t=90 s in the ST diagram shown in Fig. 24. Note the source operating by a tail-instability mechanism next to the doublon.

FIG. 25. Competition between two tilted dendritic states in a crystal close to the degenerate orientation (same crystal as in Fig. 4). $V=32~\mu m~s^{-1}~(\approx 17 V_{CS})$. Note the dynamic wall between two domains occupied by the [100] ($\phi \approx 22^{\circ}$ to the right) and the [010] dendritic states ($\phi \approx 54^{\circ}$ to the left), respectively.

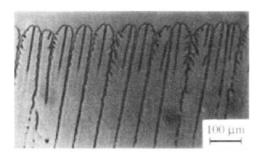


FIG. 3. Doublons in a nearly $\{001\}\$ (100)-oriented crystal. $V=103~\mu {\rm m~s^{-1}} \approx 27 V_{\rm CS}$ ($C_{\infty} \approx 4\%$ in this experiment).

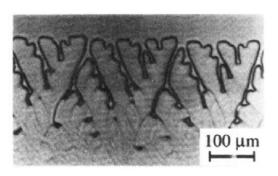


FIG. 4. Degenerate pattern in a nearly {001} (110)-oriented grain. $V=7~\mu{\rm m~s^{-1}}~(\approx 3.7 V_{\rm CS}).$

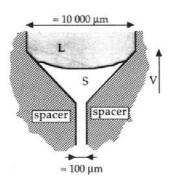


FIG. 6. Sketch of the method of obtaining single crystals (L, liquid; S, solid).

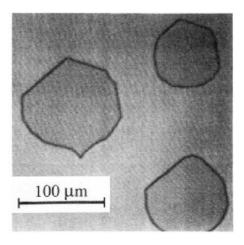


FIG. 7. Partly faceted residual-gas inclusions in a nearly $\{111\}$ -oriented crystal. Note that the orientation of the facets is the same in all the inclusions.

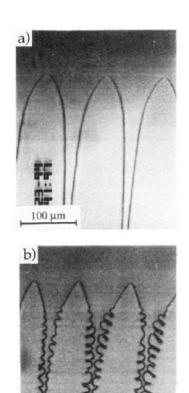


FIG. 8. Dendrite tips in a nearly $\{001\}$ (100)-oriented crystal (see Table III). (a) $V=13~\mu{\rm m~s}^{-1}$; (b) $V=35~\mu{\rm m~s}^{-1}$.

100 μm

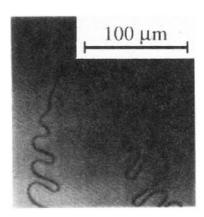


FIG. 9. Dendrite tip in a crystal relatively close to a {111} orientation (off-plane misorientation angle \approx 7°). V=14 $\mu {\rm m \, s^{-1}}$.