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We have developed a method of investigating the solute concentration field around a dendrite
growing from a supersaturated ammonium chloride solution. It uses the refractive index of the
solution as a measure of its concentration. The spatial dependence of refractive index is measured
with the aid of an interference microscope. The field distributions obtained in this way indicate a
nonlinear relationship between growth velocity and driving force. We propose a model for dendri-
tic growth based on homogeneous nucleation at a temperature below the surface roughening tem-
perature. We show that it is consistent with the measurements and also provides a mechanism of

pattern selection.

INTRODUCTION

Dendritically growing crystals, which present a
dramatic example of spontaneous pattern formation,
have been the subject of many investigations during the
past decade. Although there is a broad understanding of
the ingredients needed for a complete modeling of the sit-
uation,’? there still seem to be many open questions re-
garding the way in which the material parameters control
the shape of the dendrite eventually observed. It is clear
from the experimental work and simulations carried out
in many laboratories that diffusion, either of solute or la-
tent heat and in many cases both, is one of the controlling
themes. In addition, surface tension and growth dynam-
ics, both of which are generally anisotropic, play impor-
tant parts. It is the role of the last of these which is our
main topic.

The experiments described in this paper were designed
to measure the solute diffusion field around a growing
dendrite of NH,Cl, and we have found that they support
a model for dendritic growth of this material which is
based on the dynamics of crystal growth by nucleation on
atomically smooth facets, and which results in a natural
explanation of the pattern formation. A requirement of
this approach is that a crystal surface in the direction of
growth is below its surface roughening temperature T,
which we believe to be true for the crystals in our experi-
ments. Mauer et al. estimate the roughening tempera-
ture of NH,Br to be in the region of 70-90°C. However,
the generality of the model remains an open question,
since little is known about the surface roughening tem-
peratures of crystals in general. The experiments support
the model through direct measurements of the nonlinear-
ity in the growth kinetics and by the observation of
periodic variations in the tip velocity.

EXPERIMENTAL METHOD

Almost all of the work done to date has concentrated
on an investigation of the morphology of the growth
shapes (for example, spacing between side branches, ra-
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dius of curvature) and their evolution with time (e.g., tip
velocity). Two systems which have been widely used in
experimental work are succinonitrile, growing from the
melt,* and ammonium halides, crystalizing from solu-
tion.>>~8 The system we selected for our investigation
was ammonium chloride growing from a supersaturated
solution, for which basic data exist® as well as other ex-
periments on dendritic growth. The crystals were grown
in a cell between a glass plate and a mirror separated by a
variable distance and in contact with a heat bath. The
solute concentration field in the liquid around the grow-
ing crystal was measured from the shift of the fringes
which cross the field when the cell is observed in an in-
terference microscope. This technique measures the in-
tegrated quantity of solute in the cell along a line normal
to the cell faces, in a manner which does not disturb the
crystal growth in any way.

The results, whose estimated accuracy was about 0.3%
of the concentration, were then compared with the pre-
dictions of a model describing the solute field around the
dendrite, based on an assumption of isotropic growth and
uniform saturation concentration of solute on the surface
of the dendrite. Although the cell is quasi-two-
dimensional, the growth of the dendrite tip was assumed
to be three dimensional, since its typical dimensions were
considerably smaller than the thickness of the cell.
Several morphological phenomena associated with the re-
stricted vertical dimension of the cell were discovered
while carrying out experiments in the thinnest cells, but
since these were not relevant to the present study they
will be reported separately.°

Figure 1 shows a schematic diagram of the experimen-
tal system. The cell has an outside diameter of 28 mm.
Its base is built primarily of copper and is maintained by
flowing water at a constant temperature, to an accuracy
of about 0.2°C. A thin mirror (0.17 mm thick), alumin-
ized on its lower surface, is cemented onto it. The tem-
perature of the copper plate is measured with a copper-
constantan thermocouple. We determined that, after a
small correction (about 0.3 °C) has been made for a tem-
perature gradient across the mirror, this thermocouple
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FIG. 1. Experimental system: 1, microscope stage; 2, tilting
table; 3, water-cooled chamber; 4, copper cell base; 5, thermo-
couple; 6, thin mirror; 7, spacers; 8, sample solution; 9, micro-
scope slide; 10, flowing nitrogen; 11, interference microscope;
12, adjustable reference mirror; 13, sodium lamp; 14, television
camera; 15, VCR.

gives the temperature of the solution (the subject of tem-
perature variations within the cell due to the growth pro-
cess will be discussed later). The thickness of the sample
is determined by two identical spacers which are placed
on the mirror, and is known to an accuracy of 1-2 um.
Spacers between 20 and 160 um were used. The upper
window of the cell is a microscope slide 1 mm thick,
above which dry nitrogen gas flows slowly so as to
prevent condensation of water from the air when its tem-
perature is below ambient.

The cell is observed through an interference micro-
scope, which is essentially a Michelson interferometer in
which the cell-base mirror replaces one of the interferom-
eter mirrors. The illumination is by a sodium lamp,
which is preferable to a laser because its shorter coher-
ence length prevents formation of spurious fringes. The
microscope image shows interference fringes which
represent contours of constant phase difference between
the two arms of the interferometer; it is observed either
visually or with a video camera and a television monitor
and is recorded on video tape. The latter also records
simultaneously time and cell temperature. Because of the
limited depth of field of the microscope, the cell is mount-
ed on a tilting table which is adjusted so that it remains
in focus throughout mechanical scanning of the complete
region of interest.

We prepared solutions of high-purity (99.999%) am-
monium chloride in distilled water with concentrations of
between 27 and 31 wt. %. The saturation temperatures
of these solutions are 19.5 and 38.9 °C, respectively (Fig.
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2). For each experiment we placed a drop of the
thoroughly mixed solution on the mirror base and closed
the cell while it was maintained above the saturation tem-
perature. We then used the water cooling to reduce the
temperature, obtaining initial supercoolings of between
10 and 25 °C, and initiated crystallization by a slight tap.

We can calculate the concentration field from the in-
terference pattern as follows. First of all, before crystalli-
zation begins the tilt of the interferometer reference mir-
ror has been adjusted to give a convenient arbitrary set of
straight-line fringes represented by phase

dolr)=ar , (1)

where a is a known constant and r is the position vector
in the plane of observation. In a given interferogram, the
phase is

¢(r)=¢o+2foz[n(x,y,z)—no]kodz , (2)

where k,=2m/A is the free-space wave number of the
light and n(x,y,z) is the local refractive index. The re-
fractive index in the initial state (straight-line fringes) is
ny. The factor 2 preceding the integral arises because the
light traverses the cell twice. Z is the cell thickness.
Since the fringes are contours of constant phase, the vari-
ations in phase 8¢ =¢(r)—¢, from (2) appear as distor-
tions of the original straight fringes where one complete
fringe shift corresponds to 27 phase change.

If there were no changes in n in the z direction (uni-
form concentration throughout the thickness of the cell)
we should have from (2) a direct relationship between the
refractive index and phase change:

8¢=2Zky[n(x,y)—ng] . (3)

At a given temperature the refractive index of the solu-
tion is linearly related to the concentration C of the
solute:

n=ny+mC . 4)

a0~
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FIG. 2. Phase diagram of NH,CI in the (C,T) plane (after
Ref. 9).
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We determined m with the aid of an Abbe interferometer;
the values, which were insignificantly different from those
in the literature,” were, for A=5893 A,
ny=1.3325—0.00013(7—25°C) and m =0.190 per unit
weight fraction. The concentration change 8C is related
to 6¢ by

8C=8¢A/47Zm . (5)

If we assume that a sensitivity of 0.1 fringe can be
achieved in measuring displacements, a minimum change
of 8C=(A/20)Zm can be detected. Computer imaging-
processing techniques could possibly improve the sensi-
tivity of the technique by a further two orders of magni-
tude, but have not been employed in the present work.

Since the refractive index is sensitive to both tempera-
ture and concentration, it is necessary to assess the rela-
tive influence of these two fields on the measurements.
We can show that under typical experimental conditions
the temperature field can be neglected. First, in a den-
drite freely growing from an infinite solution, the inter-
face conditions may be at any point on the coexistence
curve, the determination of which point can be carried
out for a paraboloidal dendrite tip'' and we find that, typ-
ically, the temperature difference between the interface
and the bulk fluid is of order 0.15°C; i.e., most of the su-
percooling is in the concentration field. Moreover, the
temperature supercooling is further reduced because of
the limited cell dimensions: The lateral extent of the
fields around a growing crystal is related to the diffusion
lengths d for the temperature field and d for the con-
centration field, where d =2D /v and D is the relevant
diffusion coefficient and v is the growth velocity. For
steady-state growth conditions, the fields decay like
exp( —x /d) away from the growth front. Orders of mag-
nitude for d; and d are 2 cm and 25-40 um, respective-
ly, for a typical velocity v =0.1 mm/s. Since the cell di-
mensions are 20<Z <160 pm, usually dy>>Z>d.
Now we can consider the copper base of the cell as an
isotherm of solution temperature, and a simple calcula-
tion shows that the temperature of the crystal is essential-
ly pinned by the isothermal boundary under these condi-
tions. On the other hand, since d < Z under most condi-
tions of our experiments, the concentration changes are
affected very little by the boundaries. Even when d-~Z,
since C satisfies Neumann boundary conditions at the cell
walls, changes in C can be shown by the same calculation
to be increased somewhat by the restricted geometry.
These estimates indicate that only the concentration field
needs to be considered in these experiments.

The considerations leading to the choice of a cell thick-
ness are as follows. First, if the cell is thinner than d. we
should expect the concentration to be uniform across it
and the growth to be essentially two dimensional. This
means that the experiment will give full information
about the diffusion field. But on the other hand, the lim-
iting sensitivity is poor because of the small value of Z;
for a 20-um cell the minimum measurable 8C is 0.77%,
which is 10-15 % of the supersaturations used in the ex-
periments. Now if we consider a thicker cell, the sensi-
tivity will be greater, but the growth and diffusion is
three dimensional and the values of §C obtained are aver-
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FIG. 3. Relative change in average concentration 50 um
behind the tip, as a function of cell thickness Z.

ages of the concentration across the cell [Eq. (2)]. For a
160-um cell, the minimum detectable 6C is 0.1% of the
average concentration across the cell. To emphasize this
point, Fig. 3 shows the relative change in average concen-
tration across the cell, at a fixed distance (50 um) behind
the tip of dendrites growing under similar conditions, as a
function of the cell thickness. The local change 8C next
to the dendrite should be the same in all cases, but above
30-um cell thickness (Z ~d.), the contribution of the
bulk fluid, which reduces the average value, becomes
more and more dominant.

EXPERIMENTAL RESULTS AND ANALYSIS

Ammonium chloride can grow in three different
modes, depending on the degree of supersaturation.!? At
the lowest supercooling, dendrites grow slowly in the
(100) directions; at higher supercooling they grow first
in the (110) directions and finally in {111) directions at
the highest speed. The various modes can easily be
recognized by the different angle between the side
branches.

First we mention a quantitative verification of the reli-
ability of the interferometric method. When the dendrite
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FIG. 4. Measurements of concentration on the surface far
from the tip as a function of the supercooling. The line shows
the saturation concentration.
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FIG. 5. Interferogram of a growing dendrite with side branches (photographed from the screen).

grows very slowly, we expect the solute concentration at
its surface to be equal to the saturation value for the tem-
perature of the sample. We measured the concentration
difference between pairs of points, one close to the sur-
face of the dendrite, well behind the fast-growing tip, and
the other in the supersaturated fluid at a large distance
(>>dc) from the dendrite. We confirmed that this

difference corresponded to the known degree of super-
cooling. Note that under these conditions (slow enough
growth) d- >>Z and so there is no problem in integrating
across the cell. The results of this investigation are
shown in Fig. 4.

Figures 5 and 6 show typical interferograms around
growing dendrites (the pictures shown are single frames

FIG. 6. Interferogram of an isolated growth stem (photographed from the screen).
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from the video recording). Figure 5 shows a fairly com-
plicated system with several side branches, whereas Fig. 6
illustrates a single growing stem before side branches
form. This is a good example of a picture which is simple
enough to be useful for a quantitative analysis. Figure
7(b) shows the mean concentration field as calculated
from the fringe distortions. In this figure we can be mi-
sled into thinking that there is a considerable concentra-
tion gradient along the surface of the dendrite, but this is
mainly an artifact of the averaging, since near the tip the
system is not two dimensional, and there is also a gra-
dient in the vertical direction.

In order to make a truer measurement of the real con-
centration in the proximity of the dendrite surface, it is
necessary to correct for the solute distribution in the
vertical direction. We chose to do this by comparing the
experimental results with the model by McFadden and
Coriell.!* These authors have calculated the solute con-
centration field around an isotropically growing para-
boloidal dendrite. Their model does not take into ac-
count capillarity (the capillary length in our experiments
is 107% mm and therefore seems irrelevant—see Ref. 1),
but does take into account the density difference between
the two phases and therefore calculates a field which is
not entirely diffusive. One should note that they assume
the concentration at all points on the surface of the grow-
ing dendrite to be the saturation concentration.

McFadden and Coriell’s solution is described by

C(&)=—1+T(—ep,,p.E*)/T(—ep,,p,) , (6)

where I‘(a,b)=fZ°e7‘t““]dt is the complementary in-
complete T function,'* p, =vR /2D is the Peclet number,
and €=p,/p,—1 is the fractional volume change on
solidification, in which p; and p, are, respectively, the
solid and liquid densities. The geometry is defined by pa-
rameter £ which characterizes one of a family of para-
boloids of revolution

(a) (b)
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FIG. 7. Normalized concentration fields around an isolated
stem (a) according to the theory (Ref. 13); (b) as measured. Ab-
solute values can be obtained by multiplying by the total super-
cooling. The conditions of growth were bulk concentration
C. =28.9%, growth velocity at the tip 170 ums™!, T=9.1°C,
Z =47 pym.

y=&R/2—x*/2RE? , 7

where R is the tip radius and §=1 describes the para-
boloidal surface of the dendrite.

The model clearly does not represent our situation ex-
actly. First, the growth is not isotropic, since preferential
growth in the (100) directions is clearly seen. Second,
the shape of the dendrite is not exactly paraboloidal (it
seem closer to a cone). However, there does not seem to
be a better model for our purpose, and we do not believe
that our conclusions are strongly dependent on it. Using
this model, we can integrate in the z direction through
the thickness of the cell and thus calculate the expected
two-dimensional field, which we then compare with the
experimental results. Figure 7(a) shows the calculated
field, and Fig. 7(b) the measured one. The difference be-
tween the two fields is quite marked. It is clear that the
averaging can account for only part of the apparent in-
crease in concentration close to the tip of the growing
dendrite which is evident in Fig. 7(b). We should remark
that the existence of the upper and lower boundaries to
the cell emphasize the discrepancy, since the boundary
conditions tend to force the concentration in the direc-
tion of improved uniformity compared to the infinite
medium.

DISCUSSION

The results presented above suggest that the solute
concentration on the dendrite surface is not a constant,
but is greater than the solubility limit in the regions of
fastest growth. Most recent theories of dendritic growth?
assume that the supercooling at the interface is the bulk
supercooling A modified by corrections for capillarity
(curvature dependence) and a kinetic factor proportional
to the normal growth velocity v,,:

u,=A—dok—pv, . (8)

Since we have assumed that the capillary term is negligi-
ble, we concentrate our attention on the kinetic term,
PBv,. The results of the experiments (Fig. 8) show that
this term is not simply proportional to v,. At growth ve-
locities up to about 10 ums~! the assumption that the
last term in (8) is proportional to v, does seem to be valid;
the value of B for the various examples is of order
0.2%(ums™ ')~ ! which, when u, and A are normalized'?
as (C—Cg,)/Cgy, is 8 smm ™~ . Above about 10 ums™"
the linearity is clearly not valid. We consider that this re-
sult is consistent with a model in which the growth on a
crystal surface is dominated by a nonlinear nucleation
mechanism. This is the way in which a crystal surface
grows at a temperature below its roughening temperature
Tx. Although there is no measurement of T, for any
facet of NH,CI, photographs in the paper by Sawada®
show faceting in the later stages of growth which suggest
TR to be above ambient. Indeed, the possibility of a non-
linear ‘“’kinetic factor” was mentioned by Ben-Jacob
et al.’ without specification of any particular model for
this, and Dougherty et al.’ have mentioned the need for
specific consideration of nucleation mechanisms. It
seems very likely that the existence of different supercool-
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ing regimes for (100), (110), and (111) growth is
another manifestation of the same model.

In a model for a growing crystal surface,'® attachment
of additional molecules to the surface only occurs at de-
fects, which can be either the edges of thermally activat-
ed fluctuations in surface profile or structural defects. If
the surface is atomically rough in its structure, i.e., at
T > Ty, growth will occur for arbitrarily small values of
supercooling (difference 8u in chemical potential between
the solid and fluid phases) at a rate proportional to &u.
At T <Tpg, molecules can attach only around the edges
of statistically generated islands on a surface. Provided
that the island is larger than a certain limiting size, which
depends critically on the degree of supercooling, the is-
land grows; otherwise it shrinks. The result of this is a
very nonlinear relationship between the rate of growth
and the degree of supercooling at the surface:

v, ~ exp[ —7o?/(kTéu)], 9)

where o is the energy per unit length of the island perim-
eter, and is a function of T which becomes zero at the
roughening temperature. The form of (9) can be
represented crudely by a ‘“‘nucleation barrier,” by which
we mean that if du is less than the barrier, there will be
only very slow growth, whereas if Sy exceeds the barrier,
growth is very rapid. In the slowly growing region the
relationship (9) between 8u and v, is not strictly linear.
The magnitude of the barrier supersaturation can be es-
timated only if T and the solid-liquid surface tension are
known, which they are not. Figure 8 shows the results of
measurements of the growth velocity v, as a function of
the supersaturation next to the surface for (111) den-
drites. It is clear that there is a strong nonlinearity rem-
iniscent of a nucleation barrier. [We should remark that
the actual reversal of v(8u) in Fig. 8 is probably an ar-
tifact caused by the inapplicability in detail of McFadden
and Coriell’s solution'? to this problem.] The barriers on
differently oriented surfaces may be quite different, as
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FIG. 8. Dependence of the discontinuity in C at the surface
on the growth velocity v, for several crystals.
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may be the rates of growth once the barrier is exceeded.

Refinement of the roughening model by Van Saarloos
and Gilmer!” shows that under conditions far enough
from equilibrium to allow several islands to grow simul-
taneously, the interface fluctuations resemble those of a
rough surface even if T < Tg. This means that once fast
growth on a surface has been initiated, it remains rough
enough to facilitate further growth even if the value of 5u
falls below the barrier. It will slow down only when &u
has become so small that the growth rate can no longer
sustain the rough surface, which will occur at some lower
level of supersaturation, and may be quite close to the
saturation limit. Nozieres and Gallet!® have demonstrat-
ed similar behavior using renormalization theory. More-
over, Maurer et al.’ have very recently suggested that
growth-induced roughening occurs in NH,Br from inves-
tigations of dendrite shape as a function of growth veloci-
ty.

The result of the growth mechanism described, togeth-
er with diffusion of the solute in the fluid, is that growth
of the crystal is not continuous but undergoes relaxation
oscillations. Growth starts when the surface concentra-
tion exceeds the barrier, and it then continues until
diffusion through the fluid is unable to maintain a level
greater than the lower level. Growth then restarts only
when the barrier level is exceeded again, at which point it
can restart in any of several easy-growth directions,
which means that side branches or a change in growth
direction occur, depending on the exact concentration
distribution over the surface.

The occurrence of side branches thus seems tied to the
relaxation oscillations of the growth, and would thus
seem to be periodic, at least in a system with distant
boundaries. But the exact instant at which growth stops
is a critical function of the local supersaturation which is
the result of diffusion and is affected by the boundary
conditions—among them the existing side branches, par-
ticularly the closest ones. An example would be a situa-
tion in which a large existing side branch inhibits
diffusion, thus shortening the distance to the next side

80
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FIG. 9. Position of the dendrite tip as a function of time.
The arrows represent the times at which side branches oc-
curred. Notice the hesitation of the growth at these times.
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FIG. 10. Result of a simulation in two dimensions, based on
the nucleation model.

branch, which then grows less because of the shadowing
influence of the larger one. This is reminiscent of experi-
ments on LCR circuits containing a diode with a
current-dependent recovery time;'>?° these undergo re-
laxation oscillations which are quasiperiodic and show a
range of behaviors between periodicity and chaos. We
suggest that dendritic growth, which also shows the
range between periodicity and chaos?""?? in side branch-
ing, is another example of a similar behavior. Statistical
results on the spacing of side branches in NH,Br den-
drites have been published.’

Hints of the oscillations are observable in our experi-
ments. We have measured the position of the tip of freely
growing dendrites as a function of time, and can see the
oscillatory behavior which correlates to the production of
side branches. Figure 9 shows results for growth of a
(100) dendrite in a cell 150 um thick. The same behav-
jor was remarked on by Honjo et al.” but since their ex-
periments were done in a very thin cell (5 um thick) we
consider that the effect they observed may be due to in-
teraction with the walls.!° On the other hand, Dougherty
et al.® claim that oscillations were not present in their
very slowly growing dendrites.

We tried some naive two-dimensional (2D) simulations
along these lines. A ‘‘crystal” grew on a square lattice,
which initially had “‘supercooled fluid” at each point ex-
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cept for a single solid seed point. The crystal grew ac-
cording to the following rules, applied to each cycle of
the simulation. The liquid-solid interface is scanned. If
an adjacent liquid point has concentration above a cer-
tain barrier, the solid grows into it, rejecting solvent into
its neighborhood. If the solid had grown only in the pre-
vious cycle of the simulation, it can grow at a lower bar-
rier. After each cycle, the solute redistributes in the fluid
by diffusion for a certain time. Figure 10 shows the result
after 19 cycles on a 30X30 grid, which shows quasi-
periodic side branching. The tip hesitation phenomenon
(Fig. 9) also occurs in the simulation. We confirmed that
working on a finer grid (60X 60) gave similar results after
19X 4 cycles (in diffusion, which determines the time
scale, t ~x?2). This gives us a certain degree of confidence
in the simulations, although they should in no way be
considered as conclusive.

CONCLUSIONS

We have shown that the technique of interference mi-
croscopy can give a useful mapping of the concentration
field around a growing dendrite. The results of our inves-
tigation of ammonium chloride indicate that there is a
finite supersaturation of the fluid in contact with the
growing surface of a crystal, and that the rate of growth
is related to this supersaturation in a very nonlinear
fashion. In addition, we find that the growth of the den-
drite tip hesitates whenever a side branch emerges. Put-
ting these facts together suggests that homogeneous nu-
cleation theories for crystal growth on facets are applic-
able to the growth of these dendrites, and that the hesita-
tion finds a natural explanation in terms in relaxation os-
cillations predicted by the growth dynamics. The relaxa-
tion oscillations also relate directly to pattern formation,
and comparison with other systems with similar dynam-
ics provides some insight into the variety of periodic and
quasiperiodic forms that dendrites can assume.
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FIG. 5. Interferogram of a growing dendrite with side branches (photographed from the screen).



FIG. 6. Interferogram of an isolated growth stem (photographed from the screen).



