Dynamical Approach for Solving Complex Networks

Sidney Redner, Boston University, physics.bu.edu/~redner collaborators: P. Krapivsky, F. Leyvraz
MECO34: 34th Conference of the Middle European Cooperation in Statistical Physics 30 March - OI April 2009 Universität Leipzig, Germany

Dynamical Approach for Solving Complex Networks
Sidney Redner, Boston University, physics.bu.edu/~redner collaborators: P. Krapivsky, F. Leyvraz
MECO34: 34th Conference of the Middle European Cooperation in Statistical Physics 30 March - 01 April 2009 Universität Leipzig, Germany

Outline:
preliminaries: I. Erdős-Rényi Random Graph 2. Random Recursive Tree (RRT)
linear preferential attachment by redirection universality classes of preferential attachment genealogy
outlook

Erdős-Rényi Random Graph

Erdős-Rényi Random Graph

I. Start with N isolated nodes (and $\mathrm{N}^{2} / 2$ pairs)

Erdős-Rényi Random Graph

I. Start with N isolated nodes (and $\mathrm{N}^{2} / 2$ pairs)
2. Introduce links at constant rate

Erdős-Rényi Random Graph

I. Start with N isolated nodes (and $\mathrm{N}^{2} / 2$ pairs)
2. Introduce links at constant rate $\mathrm{N} / 2$

Erdős-Rényi Random Graph

I. Start with N isolated nodes (and $\mathrm{N}^{2} / 2$ pairs)
2. Introduce links at constant rate $N / 2$

Number of links L at time t : $L=N / 2 \times t=N t / 2$ Average degree $D=2 L / N=t$

Erdős-Rényi Random Graph

I. Start with N isolated nodes (and $\mathrm{N}^{2} / 2$ pairs)
2. Introduce links at constant rate $N / 2$

Number of links L at time t : $L=N / 2 \times t=N t / 2$ Average degree $D=2 L / N=t$
Average degree $\mathrm{k} \rightarrow \mathrm{k}+\mathrm{l}$ at rate I

The Degree Distribution

$N_{k}=$ number of nodes of degree k
$n_{k}=$ fraction of nodes of degree k

The Degree Distribution

$N_{k}=$ number of nodes of degree k
$n_{k}=$ fraction of nodes of degree k
Master equation for n_{k}

$$
\frac{d n_{k}}{d t}=n_{k-1}-n_{k}
$$

The Degree Distribution

$N_{k}=$ number of nodes of degree k $n_{k}=$ fraction of nodes of degree k

Master equation for n_{k}

The Degree Distribution

$N_{k}=$ number of nodes of degree k $n_{k}=$ fraction of nodes of degree k

Master equation for n_{k}

$$
\frac{d n_{k}}{d t}=n_{\substack{\text { gain of fodes } \\ \text { of degree } k}}^{\substack{\text { loss of nodes } \\ \text { of degree } \mathrm{k}}}
$$

The Degree Distribution

$N_{k}=$ number of nodes of degree k $n_{k}=$ fraction of nodes of degree k

Master equation for n_{k}

$$
\frac{d n_{k}}{d t}=n_{\substack{\text { gain of nodes } \\ \text { of degree k }}}^{\substack{\text { loss of nodes } \\ \text { of degree } k}}
$$

Solution

$$
n_{k}=\frac{t^{k}}{k!} e^{-k t} \quad \begin{aligned}
& \text { Poisson degree } \\
& \text { distribution }
\end{aligned}
$$

Random Recursive Tree

Random Recursive Tree
(1)

Random Recursive Tree

I. Introduce nodes one at a time

Random Recursive Tree

I. Introduce nodes one at a time
2. Attach to one earlier node randomly and uniformly

Random Recursive Tree

I. Introduce nodes one at a time
2. Attach to one earlier node randomly and uniformly

Random Recursive Tree

I. Introduce nodes one at a time
2. Attach to one earlier node randomly and uniformly

Basic observable: N_{k}, the degree distribution

The Degree Distribution

The Degree Distribution

$\underset{\text { Equation }}{\text { Master }} \quad \frac{d N_{k}}{d N}=\frac{N_{k-1}-N_{k}}{N}+\delta_{k, 1}$

The Degree Distribution

$\underset{\text { Equation }}{\text { Master }} \quad \frac{d N_{k}}{d N}=\frac{N_{k-1}-N_{k}}{N}+\delta_{k, 1}^{\frac{d n_{k}}{d t}=n_{k-1}-n_{k}}$

The Degree Distribution

$\begin{aligned} & \text { Master } \\ & \begin{array}{c}\text { Equation } \\ \text { "time" } \\ \text { variable } N\end{array} \\ & d(N)\end{aligned} \frac{d N_{k}}{N}+\frac{N_{k-1}-N_{k}}{N}+\delta_{k, 1}^{\frac{d n_{k}}{d t}=n_{k-1}-n_{k}}$

The Degree Distribution

The Degree Distribution

The Degree Distribution

The Degree Distribution

Master Equation

"time" variable N of degree k

solving one by one:

$$
N_{0}=\frac{1}{N}, N_{1}=\frac{N}{2}, N_{2}=\frac{N}{4}, \ldots
$$

The Degree Distribution

Master Equation

"time" variable N of degree k

solving one by one:

$$
N_{0}=\frac{1}{N}, N_{1}=\frac{N}{2}, N_{2}=\frac{N}{4}, \ldots
$$

ansatz: $N_{k} \simeq N n_{k}$ gives

$$
n_{k}=n_{k-1}-n_{k}+\delta_{k, 1}
$$

The Degree Distribution

Master Equation
solving one by one:

$$
N_{0}=\frac{1}{N}, N_{1}=\frac{N}{2}, N_{2}=\frac{N}{4}, \ldots
$$

ansatz: $N_{k} \simeq N n_{k}$ gives

$$
n_{k}=n_{k-1}-n_{k}+\delta_{k, 1}
$$

solution: $n_{k}=2^{-k}$

Uniform Attachment + Redirection

Uniform Attachment + Redirection | |
| :---: |
| $R(2001)$ |

Uniform Attachment + Redirection $\begin{gathered}\text { Krapivg }{ }^{\text {SR }}(2001)^{2}\end{gathered}$

Uniform Attachment + Redirection
 Krapivsky \& SR (200I)

Uniform Attachment + Redirection
 Krapivsky \& SR (200I)

Uniform Attachment + Redirection
 Krapivsky \& SR (200I)

Uniform Attachment + Redirection

Uniform Attachment + Redirection

attachment rate to ancestor node:
\propto number of upstream neighbors

Uniform Attachment + Redirection $\begin{gathered}\text { Krpividy }{ }^{8}(201)^{2}\end{gathered}$ = Linear* Preferential Attachment!

attachment rate to ancestor node: \propto number of upstream neighbors

Uniform Attachment + Redirection $\begin{gathered}\text { KRpivisy }{ }^{2}(201)^{2}\end{gathered}$
 = Linear* Preferential Attachment! *shifted

initial network

attachment rate to ancestor node: \propto number of upstream neighbors

Master Equation:

Master Equation:

$$
\frac{d N_{k}}{d N}=\frac{1-r}{N}\left[N_{k-1}-N_{k}\right]+\delta_{k, 1}
$$

Master Equation:

$$
\begin{aligned}
\frac{d N_{k}}{d N}= & \frac{1-r}{N}\left[N_{k-1}-N_{k}\right]+\delta_{k, 1} \\
& +\frac{r}{N}\left[(k-2) N_{k-1}-(k-1) N_{k}\right]+\delta_{k, 1}
\end{aligned}
$$

Master Equation:

$$
\begin{aligned}
\frac{d N_{k}}{d N}= & \frac{1-r}{N}\left[N_{k-1}-N_{k}\right]+\delta_{k, 1} \\
& +\frac{r}{N}\left[(k-2) N_{k-1}-(k-1) N_{k}\right]+\delta_{k, 1} \\
= & \frac{r}{N}\left\{\left[(k-1) \frac{1}{r}-2\right] N_{k-1}-\left[k+\frac{1}{r}+2\right] N_{k}\right\}+\delta_{k, 1}
\end{aligned}
$$

Master Equation:

$$
\begin{aligned}
\frac{d N_{k}}{d N} & =\frac{1-r}{N}\left[N_{k-1}-N_{k}\right]+\delta_{k, 1} \\
& +\frac{r}{N}\left[(k-2) N_{k-1}-(k-1) N_{k}\right]+\delta_{k, 1} \\
= & \frac{r}{N}\left\{\left[(k-1) \frac{1}{r}-2\right] N_{k-1}-\left[k+\frac{1}{r}+2\right] N_{k}\right\}+\delta_{k, 1} \\
& \equiv \frac{A_{k-1} N_{k-1}-A_{k} N_{k}}{A}+\delta_{k, 1}
\end{aligned}
$$

Master Equation:

$$
\begin{aligned}
\frac{d N_{k}}{d N} & =\frac{1-r}{N}\left[N_{k-1}-N_{k}\right]+\delta_{k, 1} \\
& +\frac{r}{N}\left[(k-2) N_{k-1}-(k-1) N_{k}\right]+\delta_{k, 1} \\
& =\frac{r}{N}\left\{\left[(k-1) \frac{1}{r}-2\right] N_{k-1}-\left[k+\frac{1}{r}+2\right] N_{k}\right\}+\delta_{k, 1} \\
& \equiv \frac{A_{k-1} N_{k-1}-A_{k} N_{k}}{A}+\delta_{k, 1}
\end{aligned}
$$

with $A_{k}=k+\left(\frac{1}{r}-2\right) \equiv k+\lambda$ shifted linear $A=\sum_{k} A_{k} N_{k}=N / r$ attachment:

Master Equation:

$$
\begin{aligned}
\frac{d N_{k}}{d N} & =\frac{1-r}{N}\left[N_{k-1}-N_{k}\right]+\delta_{k, 1} \\
& +\frac{r}{N}\left[(k-2) N_{k-1}-(k-1) N_{k}\right]+\delta_{k, 1} \\
& =\frac{r}{N}\left\{\left[(k-1) \frac{1}{r}-2\right] N_{k-1}-\left[k+\frac{1}{r}+2\right] N_{k}\right\}+\delta_{k, 1} \\
& \equiv \frac{A_{k-1} N_{k-1}-A_{k} N_{k}}{A}+\delta_{k, 1}
\end{aligned}
$$

$$
\text { with } A_{k}=k+\left(\frac{1}{r}-2\right) \equiv k+\lambda \quad \text { shifted linear }
$$

$$
A=\sum_{k} A_{k} N_{k}=N / r
$$ attachment:

$O(I)$ rule \rightarrow (shifted) linear preferential attachment!!

Master Equation Approach for Preferential Attachement

Master Equation:

$$
\left.\frac{d N_{k}}{d N}=\frac{A_{k-1} N_{k-1}}{A}-\frac{A_{k} N_{k}}{A}+\delta_{k, 1} \quad A=\text { togree to node of } \quad \begin{array}{l}
\text { attach to node } \\
\text { of degree k }
\end{array} \quad \begin{array}{l}
\text { create node } \\
\text { of degree 1 }
\end{array}\right] \quad \text { rate }
$$

Master Equation Approach for Preferential Attachement

Master Equation:

$$
\frac{d N_{k}}{d N}=\frac{\begin{array}{c}
\text { attach to node of } \\
\text { degree k-1 }
\end{array}}{A} \begin{gathered}
A_{k-1} N_{k-1} \\
\text { attach to node degree k } \\
\text { of }
\end{gathered} \quad \begin{gathered}
A_{k} N_{k} \\
\text { of date node 1 } \\
\text { of degree 1 }
\end{gathered}+\delta_{k, 1}
$$

$$
\frac{d N_{k}}{d N}=\frac{A_{k-1} N_{k-1}}{A}-\frac{A_{k} N_{k}}{A}+\delta_{k, 1} \quad A=\text { total rate }
$$

Degree Preferential Attachment Rate:

$$
A_{k} \sim k^{\gamma}
$$

Master Equation Approach for Preferential Attachement

Master Equation:

$$
\begin{aligned}
& \text { attach to node of attach to node create node } \\
& \text { degree k-1 of degree } k \quad \text { of degree } 1 \\
& \frac{d N_{k}}{d N}=\frac{A_{k-1} N_{k-1}}{A}-\frac{A_{k} N_{k}}{A}+\delta_{k, 1} \quad A=\text { total rate }
\end{aligned}
$$

Degree Preferential Attachment Rate:

$$
A_{k} \sim k^{\gamma}
$$

Total Rate: $\quad A=A(N)=\sum_{j=1}^{\infty} A_{j} N_{j}=\sum_{j=1}^{\infty} j^{\gamma} N_{j} \equiv M_{\gamma}(N)$

Moment equations:

Moment equations:

$$
\dot{M}_{0} \equiv \sum_{j} \dot{N}_{j}=1 ; \quad \dot{M}_{1} \equiv \sum_{j} j \dot{N}_{j}=2
$$

Moment equations:

$$
\dot{M}_{0} \equiv \sum_{j} \dot{N}_{j}=1 ; \quad \dot{M}_{1} \equiv \sum_{j} j \dot{N}_{j}=2
$$

These suggest: $\quad A(N)=\sum_{j} j^{\gamma} N_{j} \propto \mu(\gamma) N \quad$ for $0 \leq \gamma \leq 1$

$$
N_{k}(N) \equiv N n_{k}
$$

Moment equations:

$$
\dot{M}_{0} \equiv \sum_{j} \dot{N}_{j}=1 ; \quad \dot{M}_{1} \equiv \sum_{j} j \dot{N}_{j}=2
$$

These suggest: $\quad A(N)=\sum_{j} j^{\gamma} N_{j} \propto \mu(\gamma) N \quad$ for $0 \leq \gamma \leq 1$

$$
N_{k}(N) \equiv N n_{k}
$$

Converts rate eqns. to linear recursions

$$
\begin{aligned}
\frac{d N_{k}}{d N} & =\frac{A_{k-1} N_{k-1}}{A}-\frac{A_{k} N_{k}}{A}+\delta_{k, 1} \\
\Rightarrow \quad n_{k} & =\frac{A_{k-1} n_{k-1}-A_{k} n_{k}}{\mu}+\delta_{k, 1}
\end{aligned}
$$

Formal Solution

$$
n_{k}=\frac{A_{k-1} n_{k-1}-A_{k} n_{k}}{\mu}+\delta_{k, 1}
$$

Formal Solution

$$
n_{k}=\frac{A_{k-1} n_{k-1}-A_{k} n_{k}}{\mu}+\delta_{k, 1} \longrightarrow n_{k}=\frac{\mu}{A_{k}} \prod_{j=1}^{k}\left(1+\frac{\mu}{A_{k}}\right)^{-1}
$$

Formal Solution

$n_{k}=\frac{A_{k-1} n_{k-1}-A_{k} n_{k}}{\mu}+\delta_{k, 1} \longrightarrow n_{k}=\frac{\mu}{A_{k}} \prod_{j=1}^{k}\left(1+\frac{\mu}{A_{k}}\right)^{-1}$
determination of $\mu=\sum_{k=1}^{\infty} A_{k} n_{k}: \longrightarrow 1=\sum_{k=1}^{\infty} \prod_{j=1}^{k}\left(1+\frac{\mu}{A_{k}}\right)^{-1}$

Formal Solution: $\quad n_{k}=\frac{\mu}{A_{k}} \prod_{j=1}^{k}\left(1+\frac{\mu}{A_{j}}\right)^{-1}$

Formal Solution: $\quad n_{k}=\frac{\mu}{A_{k}} \prod_{j=1}^{k}\left(1+\frac{\mu}{A_{j}}\right)^{-1}$
Asymptotics for $A_{k} \sim k^{\gamma}$

Formal Solution: $n_{k}=\frac{\mu}{A_{k}} \prod_{\substack{j=1 \\ k}}^{k}\left(1+\frac{\mu}{A_{j}}\right)^{-1}$
Asymptotics for $A_{k} \sim k^{\gamma}$
(use $\left.\prod\left(1+\epsilon_{j}\right)^{-1} \sim e^{-\int^{k} \epsilon_{j} d j}\right)$

Formal Solution: $n_{k}=\frac{\mu}{A_{k}} \prod_{\substack{j=1 \\ k}}^{k}\left(1+\frac{\mu}{A_{j}}\right)^{-1}$
Asymptotics for $A_{k} \sim k^{\gamma}$
(use $\left.\prod\left(1+\epsilon_{j}\right)^{-1} \sim e^{-\int^{k} \epsilon_{j} d j}\right)$

Formal Solution: $\quad n_{k}=\frac{\mu}{A_{k}} \prod_{j=1}^{k}\left(1+\frac{\mu}{A_{j}}\right)^{-1}$
Asymptotics for $A_{k} \sim k^{\gamma}$

Creating a "Bible"

Creating a "Bible"

Creating a "Bible"

Creating a "Bible"

Formal Solution: $\quad n_{k}=\frac{\mu}{A_{k}} \prod_{j=1}^{k}\left(1+\frac{\mu}{A_{j}}\right)^{-1}$
Asymptotics for $A_{k} \sim k^{\gamma}$

Formal Solution: $\quad n_{k}=\frac{\mu}{A_{k}} \prod_{j=1}^{k}\left(1+\frac{\mu}{A_{j}}\right)^{-1}$
Asymptotics for $A_{k} \sim k^{\gamma}$

Formal Solution: $\quad n_{k}=\frac{\mu}{A_{k}} \prod_{j=1}^{k}\left(1+\frac{\mu}{A_{j}}\right)^{-1}$
Asymptotics for $A_{k} \sim k^{\gamma}$
$n_{k} \sim\left\{\begin{array}{lr}k^{-\gamma} e^{-\left[\mu k^{1-\gamma} /(1-\gamma)\right]} & 0 \leq \gamma<1 \\ k^{-\nu}, \nu>2!!! & \gamma=1 \\ \text { "best seller" } & 1<\gamma \leq 2 \\ \text { "bible" } & \gamma>2\end{array}\right.$

Origin of Non-Universal Degree Distributions

Origin of Non-Universal Degree Distributions

$$
\begin{aligned}
n_{k} & =\frac{\mu}{A_{k}} \prod_{j=1}^{k}\left(1+\frac{\mu}{A_{j}}\right)^{-1} \\
& \sim \frac{\mu}{k} \exp \left[-\int_{1}^{k} \ln \left(1+\frac{\mu}{j}\right)\right] d j \\
& \sim \mu k^{-(1+\mu)} \equiv k^{-\nu}
\end{aligned}
$$

Origin of Non-Universal Degree Distributions

$$
\begin{aligned}
n_{k} & =\frac{\mu}{A_{k}} \prod_{j=1}^{k}\left(1+\frac{\mu}{A_{j}}\right)^{-1} \\
& \sim \frac{\mu}{k} \exp \left[-\int_{1}^{k} \ln \left(1+\frac{\mu}{j}\right)\right] d j \\
& \sim \mu k^{-(1+\mu)} \equiv k^{-\nu} \\
\mu & =\sum_{j} A_{j} n_{j} \sim \sum_{j} j n_{j}
\end{aligned}
$$

Origin of Non-Universal Degree Distributions

$$
\begin{aligned}
n_{k} & =\frac{\mu}{A_{k}} \prod_{j=1}^{k}\left(1+\frac{\mu}{A_{j}}\right)^{-1} \\
& \sim \frac{\mu}{k} \exp \left[-\int_{1}^{k} \ln \left(1+\frac{\mu}{j}\right)\right] d j \\
& \sim \mu k^{-(1+\mu)} \equiv k^{-\nu} \\
\mu & =\sum_{j} A_{j} n_{j} \sim \sum_{j} j n_{j} \\
& \longrightarrow 1<\mu<\infty \\
& 2<\nu<\infty
\end{aligned}
$$

Linear Attachment $A_{k}=k$:

$$
n_{k}=\frac{4}{k(k+1)(k+2)}
$$

Linear Attachment $A_{k}=k$:

$$
n_{k}=\frac{4}{k(k+1)(k+2)}
$$

Shifted Linear Attachment $A_{k}=k+\lambda$

$$
\begin{aligned}
n_{k} & =\frac{\mu}{A_{k}} \prod_{j=1}^{k}\left(1+\frac{\mu}{A_{j}}\right)^{-1} \\
& =(2+\lambda) \frac{\Gamma(3+2 \lambda)}{\Gamma(1+\lambda)} \frac{\Gamma(k+\lambda)}{\Gamma(k+3+2 \lambda)} \\
& \sim k^{-(3+\lambda)} \quad-1<\lambda<\infty
\end{aligned}
$$

Genealogy (for uniform attachment)

Size of generation $\mathrm{g} \equiv L_{g}$

Genealogy (for uniform attachment)

Size of generation $\mathrm{g} \equiv L_{g} \quad$ rate equation: $\quad \frac{d L_{g}}{d N}=\frac{L_{g-1}}{N}$

Genealogy (for uniform attachment)

Size of generation $\mathrm{g} \equiv L_{g}$
Solution: $L_{g}=\frac{(\ln N)^{g}}{g!}$

Genealogy (for uniform attachment)

Size of generation $\mathrm{g} \equiv L_{g}$
Solution: $L_{g}=\frac{(\ln N)^{g}}{g!}$
$L_{g}=1$ defines last generation $\longrightarrow g_{\text {max }} \sim e \ln N$ diameter $\sim 2 e \ln N$

Genealogy (for $\mathrm{A}_{\mathrm{k}}=\mathrm{k}$) use redirection!

Rate equation: $\quad \frac{d L_{g}}{d N}=\frac{(1-r) L_{g-1}+r L_{g}}{N}$

Genealogy (for $\mathrm{A}_{\mathrm{k}}=\mathrm{k}$) use redirection!

Rate equation:

$$
\frac{d L_{g}}{d N}=\frac{(1-r) L_{g-1}+r L_{g}}{N}
$$

Genealogy (for $\mathrm{A}_{\mathrm{k}}=\mathrm{k}$) use redirection!

Genealogy (for $\mathrm{A}_{\mathrm{k}}=\mathrm{k}$) use redirection!

Rate equation: $\frac{d L_{g}}{d N}=\frac{(1-r) L_{g-1}+r L_{g}}{N}$
For $\mathrm{A}_{\mathrm{k}}=\mathrm{k}$, take $\mathrm{r}=\mathrm{I} / 2$

Genealogy (for $\mathrm{A}_{\mathrm{k}}=\mathrm{k}$) use redirection!

Rate equation: $\quad \frac{d L_{g}}{d N}=\frac{(1-r) L_{g-1}+r L_{g}}{N}$
For $\mathrm{A}_{\mathrm{k}}=\mathrm{k}$, take $\mathrm{r}=\mathrm{I} / 2$ morally similar solution as for $r=0$

Genealogy (for $\mathrm{A}_{\mathrm{k}}=\mathrm{k}$) use redirection!

Rate equation: $\frac{d L_{g}}{d N}=\frac{(1-r) L_{g-1}+r L_{g}}{N}$
For $\mathrm{A}_{\mathrm{k}}=\mathrm{k}$, take $\mathrm{r}=\mathrm{I} / 2 \longrightarrow g_{\max } \sim b \ln N$ morally similar solution as for $r=0$

Outlook

The master equation is a powerful tool to analyze incrementally growing, complex networks.
Wide range of degree distributions arise by preferential attachment; non-universal power law for linear preferential attachment.

Topological features and more general models are treatable by the ME approach.

Outlook

The master equation is a powerful tool to analyze incrementally growing, complex networks.
Wide range of degree distributions arise by preferential attachment; non-universal power law for linear preferential attachment.

Topological features and more general models are treatable by the ME approach.

Some open questions/future possibilities:

Outlook

The master equation is a powerful tool to analyze incrementally growing, complex networks.
Wide range of degree distributions arise by preferential attachment; non-universal power law for linear preferential attachment.

Topological features and more general models are treatable by the ME approach.

Some open questions/future possibilities:

Why is linear preferential attachment so generic?

Distribution of Citations of Physical Review

Outlook

The master equation is a powerful tool to analyze incrementally growing, complex networks.
Wide range of degree distributions arise by preferential attachment; non-universal power law for linear preferential attachment.

Topological features and more general models are treatable by the ME approach.

Some open questions/future possibilities:

Why is linear preferential attachment so generic?
Incorporation of spatial structure.

Outlook

The master equation is a powerful tool to analyze incrementally growing, complex networks.
Wide range of degree distributions arise by preferential attachment; non-universal power law for linear preferential attachment.

Topological features and more general models are treatable by the ME approach.

Some open questions/future possibilities:

Why is linear preferential attachment so generic?
Incorporation of spatial structure.
Formulation \& analysis of realistic social network models and their dynamics (communities, frustration, etc.).

